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Boundary-layer drag in three-dimensional supersonic flow 

By J. C .  COOKE 
Royal Aircraft Establishment, Farnborough 

(Received 14 November 1962) 

A general theorem for drag is given according to which the boundary-layer 
drag of a body is equal to the inviscid drag of the displacement surface together 
with a term which is given as an integral involving the ‘streamwise’ momentum 
and displacement thicknesses taken round the trailing edge. A less accurate result 
for thin slender wings is that the boundary-layer drag is equal to the line integral 

taken round the trailing edge, where 0 is the streamwise momentum thickness. 
This result leads to the possibility of finding boundary-layer drag by means of 
a traverse round the trailing edge. The extension of the results to wings with 
swept trailing edges is also given. 

1. Introduction 
The effect of ‘the boundary layer on the drag of wings and bodies is usually 

divided into two parts, which have been given the names ‘boundary-layer 
pressure drag’ and ‘skin-friction drag’. The first is due to the effect of the boun- 
dary layer on the pressure distribution over the surface of the body. It is possible 
for this to be negative; for instance if there is considerable thickening of the 
boundary layer at  the rear, these might be sufficient increase of pressure over 
backwards facing surfaces to give a resultant forward thrust. The remainder of 
the drag is then skin-friction drag. We shall not here divide the drag in this way 
but have preferred instead to take one part of the total drag to be the drag on 
it fictitious body known as the displacement surface; the other part will be what 
is left, which will be mainly, but not entirely, skin-friction drag. Such a division 
is in any case artificial; what we require to know is the total drag due to boundary- 
layer effects. 

In  boundary-layer theory it is usually accepted that the external flow behaves 
as though it were over a distorted body thickened by an amount a*, the dis- 
placement thickness and it is this body which we shall call the displacement 
surface. Lighthill (1958) has shown how a* can be calculated in three-dimensional 
flow. 

We take Cartesian co-ordinates Ox, Oy and Ox with 0 a t  the pointed apex of 
the body and Ox parallel to the free-stream direction. We take A* and 0 as dis- 
placement and momentum thicknesses based on x-components of velocity at the 
trailing edge and we write H = A*/@. We first prove a general theorem for 
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pointed bodies in supersonic flow. According to this theorem the drag of a body 
is equal to the drag of a body coinciding with the displacement surface together 
with a term pN, where N is given by 

@dg+ 2 puDu’ (A* -6*)da-  cp 6 * h  + O(S2), (1) 
P m  u2, s 

in which the integrals are taken round the trailing edge, and 

Q = iiP,v?m, u[D = uo-um. (2) 

The subscript D refers to values at  the trailing edge due to inviscid flow over the 
undistorted body, and S is the boundary-layer thickness and cp is the pressure 
coefficient at the trailing edge for the undistorted body. 

If the body is slender these integrals may be simplified. Taking the maximum 
semi-span to be s we find that 

N = N’+E’, (3) 

where (4) 

Here M is the Mach number a t  infinity. If the body is thin and of maximum 
thickness t the order-of-magnitude terms are replaced by O(6s3t2 log2 s) and E’ 
itself is of order 6s3t2 and may be omitted. Terms of order S2 are neglected in all 
cases. 

We also give a less precise but greatly simplified version of the general theorem, 
obtained by neglecting terms of order 6s310gs or Ss2tlogs as the case may be. 
The result is: The drag of a body is equal to the inviscid drag of the body together 
with an amount qNl, where 

XI = 2 /@dcT (6) 

taken round the trailing edge. 
Of course the success of this method of determining drag depends on being 

able to calculate the boundary layer, the shape of the corresponding displace- 
ment surface and the inviscid flow over this surface. Fortunately i t  appears that, 
under certain conditions at least, the simplified form of the general theorem is 
sufficiently accurate. When this is so that contribution to drag is simply qNl. 
This involves only the calculation of 0 at the trailing edge. 

The simplified form suggests the possibility of determining the boundary- 
layer drag by means of a traverse at the trailing edge. There is of course in general 
a shock at the trailing edge, but if the boundary layer is turbulent the upstream 
influence of this shock is usually considered to be limited to one or two boundary- 
layer thicknesses and it should not be too difficult to make the traverse close to 
the trailing edge yet sufficiently far upstream of the shock for it to have no 
influence. In  some pictures the shock seems to start slightly downstream of the 
trailing edge, so that it should be possible to make the traverse quite near to the 
trailing edge. 
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2. Momentum balance 
Following Ward (1949) we surround the body by a cylinder of radius r ,  with 

plane ends normal to the stream a t  the leading and trailing edges. For the moment 
we suppose that the back of the body lines in the latter plane. Taking U, to be the 
velocity at infinity, 7 the disturbance potential due to a distorted body, namely 
one thickened by an amount 6*, where 6* is the extra thickness of the displace- 
ment surface, we may write the velocity components G, 5 and W 

outside the boundary layer. A bar over any quantity signifies that its value for 
the distorted body is to be taken. 

G' = ;il- u. We shall write 

For simplicity we have chosen a delta wing with rhombic cross-sections and 
parabolic biconvex centre-section a t  zero lift for our example, and the boundary 
layer has been assumed to grow over this wing in the same way as that over a 
flat plate. It is probable that this assumption is not too inaccurate for thin 
wings a t  zero lift, except perhaps near to the centre-line of the wing. On this 
assumption the expressions (4) and (5) can be worked out in full, and it is indeed 
found that only Nl gives a significant contribution to the total boundary-layer 
drag. Thus the simplified form of the theorem is shown to be adequate in this case. 
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We denote by XI, X2, . . . , certain surfaces as shown in figures 1 and 2. Figure 2 
is an end-on view of the section by the plane at the trailing edge. In  this figure 
the curve B is the section of the edge of the boundary layer, C is the section of 
the displacement surface and D is the bounding curve of the blunt base of the 
body. We denote the value of the x-component of the velocity inside the boundary 
layer by t$, and the corresponding density by Pb. 

Conservation of mass through the cylinder gives 

The drag force on the body and the component in the x-direction of the 
pressure forces on the cylinder will together balance the flux of x momentum 
of the fluid leading the cylinder. Hence the drag D is given by 

In this equation pb is the pressure inside the boundary layer, pB is the mean 
base pressure and X(D) is the base area. Equation (9) is the same as that given 
by Ward (1949) with extra terms due to the boundary layer and slight changes 
in notation. 

Multiply equation (8) by U, and subtract from equation (9) and we have 

Now 

where 

I3 = - IS3 { p -p,  +pu2 -pull,} dS = - ( 1 2 )  

n 

From now on we shall omit the last term in equation (10)  for convenience. It 
may be inserted if necessary, that is if the body has a base. 

3. The value of I 3  + I , ,  
We may write 

I3 = - IS8KdS  = - KdS+IS4KdS.  
s3+s4 
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In this equation we may give the part of the integrand which is integrated 
over X, any value we wish; we shall give p ,  p and U their inviscid values due to 
flow over the distorted body. These are not their true values since X, is inside 
the boundary layer. The last term in equation (13) is equal to 

where we have written 

We denote values at the edge of the boundary layer by the subscript e .  If 
in the expression (14) we replace U. by iie and p by pe the error in the integrand is 
of order 6. Since X, is of order 6 we may make this substitution in the integral 
(14) with an error of order a2. Hence we have 

It is usual to assume that the change of pressure across the boundary layer is 
of order 6 so that the last integral in equation (15) is of order a2 and may be 
neglected. This assumption may not be justified near to the trailing edge. 
Nevertheless, we shall make it for the time being, postponing further discussion 
on the matter to 9 9. 

With this assumption the sum of the last three integrals in equation (15), 
denoted by qN, may be written, on making use of equation ( 2 )  

{ p b  ub(ce - Ub ) f ~ ~ ( ~ e ~ e  - P b  u b ) }  d8 - (qcp + pue ZA) d 8 .  
JS, 

We note that dX = (1  + l / r )  dgda, 

where 5 is measured normal to the section of the body by the plane at  the trailing 
edge perpendicular to the free stream and r is the radius of curvature of the 
section by this plane, assumed to be of order unity. We define 

We have also 

We may replace the subscript e by D with error of order 6 in each case. Thus we 
have, to order P, 

N = 2/Dp@@dv+2 uz, cp6*dv.  

5 Fluid Mech. 17 
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Lighthill (1958) showed that if streamline co-ordinates ,$ and 7 are taken such 
that the line elements along and perpendicular to the ex6ernal streamlines are 
h& and h,dy respectively, then 

6* = 6,- ~ - a SEpeu[h68,at ,  
P e V &  0 

where 

and Uc, u, are the external and internal components of velocity in the streamline 
direction and u, is the component normal to the streamlines. U, is of course 
zero. It is possible to show that 

A* = S, + 6, tan a, 

where a is the angle between the streamlines and the direction of flow at infinity, 
and so 

4. General theorem for drag 
We have 

and this equation, excluding the last term, is the momentum-balance equation, 
with the same control surface as before, for inviscid flow past the distorted body, 
with base pressure equal top,. In  other words, the sum of the first two terms on 
the right-hand side of the equation is the drag of the displacement body, that is 
the integrated component of p - p a  over the surface. 

Hence we have the general theorem: The drag of a body is equal to the drag 
of the displacement body together with a term qN,  where 

If the body is slender with maximum semi-span s we may write this result in 
a simpler form. We have for a slender body 

and u&/U is of order s210gs. The second term in equation (17) is of order 
6s410g2s if we suppose that uB is of order s or smaller, so that a,, is of order 6s. 
The component uo is usually small if the body is slender or thin (except perhaps 
when separation is approached). In such a case we may ignore this term and also 
replace 6” by A* in the last term. Hence we have for slender body 

N = N‘ + E’, 
where N ’ = 2 S D  0 [ 1+- (2+H-M2)  ub urn 

E ’ = / - A  V L + W &  * da. 
u: 
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An alternative form for N' is 

We write N' in this form so as to compare it with the result of Squire & Young 
(1938). 

For a slender body in supersonic flow the difference between the inviscid 
drag of the body and that of the displacement body is of order Ss310gs or 
Ss2tlogs. If we are content with a lower order of approximation in which such 
magnitudes may be ignored we may write the result: The drag of a body is equal 
to the inviscid drag of the body together with a term qN,, where 

& = 2 1 D @ d c .  (23) 

In this case qiV, is equal to the skin-friction drag. 
If the body is thin but not slender and the cross flow is of order t we may write 

the result: The drag of a wing is equal to the drag of the displacement surface 
together with a term gN', where 

The E' term may here be dropped and the error is of order at2. 

5. Drag of an axially symmetric body at zero incidence 
If the body is axially symmetric it may have a blunt trailing edge (a circle) or 

a sharp trailing edge (a point). Suppose that the radius at  the trailing edge is ro. 
In  this case the integral Ib5, which is of the form 

may be written 
J o  

where y and S are measured perpendicular to the axis of the body. 
If we give 0 and S* their usual definitions for axially symmetric flow, namely 

as given in Howarth (1953), we find 

N = 4 7 ~ ~ ~ 8  ___- PD~' 3nrod*c,, 
Pa, u: 

and for a slender body 
2 f H  -&fa 

N' = 4 n r o d ( z )  , 
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where v, now represents the radial component of velocity of the inviscid flow 
at the trailing edge of the undistorted body. 

If the body is pointed at  the rear, 6' and S* are infinite since ro is then zero, but 
ro6' and ro6* are finite. 

If we are content with an error term of order 6s310gs we find that 

Nl = 477(r00), (27) 

and this gives it very simple form for the boundary-layer drag, as it is only neces- 
sary to find the value of ro6' a t  the trailing edge of the body. Approximate 
methods of doing this axe well known in both lamina,r and turbulent flows. 

6. Drag of a slender thin wing with a sharp straight trailing edge in 
supersonic flow 

We suppose that the trailing edge is at  right angles to Ox, that Oy is parallel 
to it, and that x = 1 a t  the trailing edge. 

In  order to make use of the general theorem in 5 4 we must find the drag of the 
distorted wing. For zero lift this was given approximately by Weber (1960) as an 
extension of Lighthill's formula (1956) to the case where the trailing edge has 
finite thickness. Using Weber's result we find that the total drag at  zero lift 
is given by 

1 

+m ( E  + AE -log ps) + E' + N' ,  (28) 
27r 

AE N - 1*3S*/~, C(y) = aZ( 1, y)/ax, 
S* being the mean value of a* at the trailing edge. 

X(X) = X(X) + A&(x), D = D + AD, We write 

C(Y) = e(y) + A ~ Y ) ,  e(y) = az(l,y)/% WY) = aS*(l,y)/ax, 
and ignore squares and products of terms involving A. We find, after subtracting 
the inviscid drag D of the undistorted body, that the drag increment due to the 
boundary layer is given by 

+E'+N'+O(Ss3t~log2s), (29) 
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It may be noted that the terms E’ and 1.3S*{X’(1)}2/2rrs are of order Sst2 
whilst the other terms (excluding N ‘ )  are of order Ss2tlogs. The former may usually 
be ignored for a thin slender wing. I n  the example to follow E’ and the S* terms 
have been calculated; the contribution of each to the total drag is less than 0.1 yo. 

If we ignore these two terms there is no difficulty in extending the result to 
unsymmetrical wings a t  lift, provided that there is attached flow along the 
leading edges. All that is necessary to be done is to replace, in equation (30)) 
the range - s  to s in all the integrals by D, where D is taken right round the 
trailing edge, top and bottom. 

7. An example 
In  order to illustrate the method and to obtain some idea of the magnitudes 

involved we shall consider the delta wing with symmetrical rhombic sections 
and bi-convex centre section, for which (Weber 1957) 

z(z,y) = k 2t(x- ( y l / s )  (1-4, E ( Y )  = 2t(1- (ylls), 
X’(Z) = 4 t ~ 2 ( 2  - 3 ~ ) )  S”(Z) = 8ts( 1 - 3 ~ ) )  

where t is the maximum thickness. 
We shall suppose that the boundary-layer flow is turbulent all over the wing, 

which is placed a t  zero incidence, and that it is the same as for flow over a flat 
plate of the same planform; also that for M = 2 the displacement thickness is 
approximately given by 

where R is the Reynolds number based on root chord. This gives 

8” = 0-095R-*(x- l y l / ~ ) $ ,  

A c ( ~ )  = L(1- I Y / / S ) - * ,  AX’(x) = ~ L s x ~ ,  
AX”(x) = ~ L s x - : ,  0 = ~ - L ( x -  1 2  I y l /~ ) t ,  

where L = 0.076R-f. 

The value of H has been taken from Young’s (1953) curve, giving H = 3. 
We now make use of equation (29), omitting E’ and the term in S* each of 

which contributes less than 0.1 % of the total drag. The integrals involved may 
all be evaluated but the numerical work is tedious and is omitted here. We shall 
write the increment of the drag coefficient over the inviscid value as ACD, where 

ACD = ACD,+ N’/s, 

C,, being the drag of t,he displacement body; we write 

N‘ = Nl + N2, 

where 

The following results are found: 

AC,, = (e) (11.99+20log,8s), 

.& = ~ L s ,  f12 = (40Lts2/3n) (0.655- l * l l l l o g ~ s ) ,  

where p2 = M2- 1. 
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The inviscid drag coeecient of the wing is given by 

CD = (8t2s/n) (0.605-10gPs). 

If the take Ps = 0.4, s = 0.23, t = 0-05, R = lo7 we find 

ACDJCD = - 0.031, NJCDS = 2.48, NJCDS = 0.100. 

Thus we see that the main contribution to the drag increment comes from N,, 
that is the part given by equation (23). This gives an increase of 248 yo over the 
inviscid drag, whilst the other terms give a decrease of 3.1 % and an increase 
of 10.0 yo, both of which are quite small compared to the total drag. 

cDi Nl N ,  Inviscid 
R = 107 - 0.9 69.7 3.1 28.1 
R = 4 x los - 0.7 54.4 2.4 43.9 

TABLE 1. Contributions to drag as percentage of the total. p s  = 0-4. 

If we take a Reynolds number of 4 x 108, such as might be appropriate for a 
wing of chord 200ft. flying at  Mach 2 at 55,00Oft., each of the contributions is 
halved. We obtain the results given in table 1, where we now express the various 
contributions as percentages of the total drag. This table suggests that in assessing 
the effect of the boundary layer on a slender wing at  zero lift it may be sufficient 
to confine ourselves to the N, contribution and write 

taken round the trailing edge, where A is the area of the wing. 
Varying the value of Ps alters the results somewhat, and so we have worked 

out the effect of such variation, keeping M = 2. The results are shown in figure 3 
for R = lo7 and R = 4 x lo8. It is seen that the contributions from ACD, and N2 
are small, so that the conclusion just given remains unaltered. 

We have evaluated the integral N, for a case for which 0 was calculated by the 
method of Cooke (1961) a t  five points along the semi-span at  the trailing edge. 
The wing was a ‘delta’ with 11 yo thickness chord ratio and + aspect ratio, the 
cross-sections being rhombic, having a different area distribution from that 
already considered. The Mach number was 2. The skin-friction drag of this 
model was not measured, but that of a model similar, but with three-quarters 
of the thickness, was found to be 0.00515. The change in thickness should not 
make much difference to the skin-friction drag at  zero lift; indeed it is usually 
assumed to make no difference at all. The value of N, obtained by calculation 
is 0.00517. 

8. Drag of a body with a swept sharp trailing edge 
So far it has been supposed that the trailing edge lies in a plane normal to the 

direction of flow at infinity. If it is swept and sharp we may take the rear part 
of the control surface as that generated by lines normal to this edge and to the 
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direction of flow at infinity. If at  any point on this surface the local angle of 
sweep is A we must modify equations (8) and (9). Equation (10) becomes 

D = I,+ J3+ Ja5, 

80 

60 

% 4o 

20 

0 0.2 0.4 0.6 0.8 1 -0 

0 0.2 0.4 0.6 0-8 1.0 

P8 

(b)  

( a )  R = 107; ( b )  R = 4 x 10s. 
FIGURE 3. Contributions to drag as a percentage of the total. 

in which I2 is the same as before, but 

n 

J3 = -J {(F-p,) cos A +p(U - U,) (U cos A -  V sin A)) dS, 
S a  
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Analysis similar to that already given leads to the result 

8 

p e u z o 1 2  = I0 Pwb(aeUeub)d6? PeUeA'* = I o 8 ( p e f l e - p b w b ) d 6 *  

The line integrals are taken round the trailing edge as before. We can show that 

A'* - (wn/uD) 6" = tan - 6*)  - 6,. 

In  the slender- or thin-wing case with cross flow of order s or t we find 

and for a thin wing we may ignore E' as before. 
As regards the value of O,, consideration of the velocity profiles to be expected 

(see, for instance, Cooke 1961) in turbulent flow (which generally occurs at  the 
back of a body) leads to an approximate value for O,, in terms of 0 given by 

O,,/O = 0*5y+a:, 

where y is the angle between streamlines and limiting streamlines and a: is the 
angle between streamlines and the direction of flow at infinity, both measured 
at the trailing edge. For slender bodies and thin wings a is small and we have 
throughout assumed y to be small. Hence a t  angles of sweep up to 60" or perhaps 
more we may probably ignore the term in O,, without serious error, though it 
will become of increasing importance if the angle of sweep is much more than 
this. 

9. Discussion 
We return first to the assumption made in $ 3 ,  which may be restated as im- 

plying that the mean value of p b  across the boundary layer differs from p by 
an amount of order 6. The assumption p b  = p is in fact usually made in boundary- 
layer theory, but this is open to doubt at  the trailing edge of the wing. In  two 
dimensions a more accurate expression for the pressure change is given by 
aplag = p b K b U % ,  where K b  is the curvature of the streamlines. At the trailing edge 
K b  may be large and this will modify the result. In subsonic flow Spence (1954) 
found the pressure difference across a turbulent boundary layer at the trailing 
edge to be pu:r/wn(EZ - I ) ,  

where r is the trailing-edge angle. However, it  is of course by no means certain 
that the analysis goes over into supersonic flow. If, however, it does apply in 
this case, our expression for w in equation (16) has an appearance of precision 
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which is not justified, since the error in the last term in equation (16) is of the 
same order as the term itself. Thus until the matter of the pressure change across 
the boundary layer can be cleared up we are not justified in making a statement 
any more precise than that given in equation (23), for which the difficulty does 
not arise. This may not at  present be a serious limitation in view of the fact that 
most applications involve thin wings and slender bodies, and of the fact that no 
great precision is yet possible in calculating turbulent boundary layers. 

The difficulty may be partly avoided for thin wings or slender bodies by 
making the traverse a t  a short distance, say 6, upstream of the trailing edge, 
where the pressure change across the boundary layer may be expected to be 
small and where the upstream influence of the shock would be negligible. This 
would mean that the drag so calculated would in error by the amount of the drag 
on the small part of the wing cut off. If we denote the mean value of cpr over 
the distance 6 by (cpr),, where r is the backwards slope of the surface, the 
pressure drag on the small part will be 

n 

- 6  (cpr),dg. 
J D  

This, together with the skin friction of the small part (which is of order ST, where 
r is a little less than 2, say 1.8, and may be ignored) would then need to be added 
to the drag as calculated by the method of this paper. In  the case of a slender 
body, cp is of order s2logs and r is of order s, so that the expression (32) will be 
of order 6s4 log S ,  whilst E' is of order 6.~3 and the second term in equation (20) 
for N' is of order 6s3logs. Hence if the drag were calculated by making the 
traverse a distance 6 upstream and ignoring the correction term (32) the error 
in drag would be of order 6s4 logs. Strictly one should now calculate the drag 
of the displacement surface with a piece of width 6 cut off at  the back. However, 
if the correction (32) is going to be ignored it would be better (and simpler) to 
take the drag of the full displacement surface as before, since doing this will 
help to neutralize the error made in ignoring the correction (32). 

Consequently for a slender body, one would hope to obtain a good approxi- 
mation by drag by making the traverse a distance 6 upstream, calculating N' 
and E' by equations (20) and (21) and adding to the drag of the full displacement 
body; for a thin wing, equation (34) would also apply for such a modified traverse. 

The conclusion that the extra drag may be given by the one equation (31) 
could possibly be tested by means of a boundary-layer traverse round the trailing 
edge. This would need to be ahead of the trailing-edge shock, but such a shock 
often seems to be a little behind the trailing edge; if the boundary layer there is 
turbulent the upstream influence of the shock is usually believed to be only 
about one or two boundary-layer thicknesses, so that there may be some hope 
of avoiding the effect of the shock and yet making the traverse quite near to 
the trailing edge. 

In  this connexion we may mention the work of Meyer (1957) who dealt with 
the general problem of determing drag in two-dimensional supersonic flow by 
means of a traverse behind the trailing edge. For the total drag it would be 
necessary to make a traverse over all of the area of the section of the nose shock 
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by a normal plane through the trailing edge, and not merely inside the boundary 
layer. Meyer’s study suggested that this would be difficult enough with present 
instrumental facilities even in two-dimensional flow; in three dimensions where 
possible cross flows may exist it  might be very difficult indeed. 

One difficulty not immediately brought to light in the above analysis is the 
effect of transition. In  the example the boundary layer was assumed to be all 
turbulent. If it is laminar over part of the surface this will of course have its 
effect on 0, reducing it and so reducing the contribution to the term I?. There is 
no theoretical difficulty here. What is difficult is to assess the effect on what we 
have called AC,,. There is rather a sudden drop on H at transition, which causes 
a corresponding drop in a*, since 8 is supposed to be continuous a t  transition. 
This may result in a shock but even if it does not do this it raises a new difficulty. 
The displacement surface produced is not any longer amenable to a linear theory 
since its shape does not fulfil the assumptions of such a theory. This effect was 
first pointed out by Young & Kirkby (1955), who were able to deal with it satis- 
factorily in two dimensions. The difficulty does not affect the theory in 0 4, but 
it makes the drag of the displacement surface difficult to calculate. It is possible 
that the method of Young & Kirkby could still be applied, though there may be 
error in applying two-dimensional simple-wave theory to this three-dimensional 
problem, especially if the transition front is swept, as it usually is. 
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